About The Author
Stella B. Shekhunova, Svitlana M. Stadnichenko, Vitalii V. Permyakov
Institute of Geological Sciences of NAS of Ukraine, Kyiv
Volodymir M. Paliy
Presidium of the National Academy of Sciences of Ukraine, Kyiv
Stella B. Shekhunova, Svitlana M. Stadnichenko, Volodymir M. Paliy, Vitalii V. Permyakov
Abstract
The nanostructural and nanotextural features of the Vendian (Callus) concretionary and Alb-Cenomanian shelly, sponge
phosphates of two levels of phosphate accumulation on the territory of Ukraine were investigated, using precision research
methods (scanning electron microscopy, EDS analysis). The following nanotextures of phosphates were documented: globular
(in cavities, hypergenic-corroded crystalomorphic), microglobular, intrinsic (globular, crystalomorphic, crustified), crystallomorphic
(elongated-prismatic, shortprismatic, needle, sub-parallel, non-oriented), radial-ray. The basic genetic types of
their nanotextures (biomorphic, microbial, diagenetic, hypergenic, etc.) were distinguished and described. It is shown that
for Cretaceous Alb-Cenomanian phosphates globular, and for Vendian crystalomorphic heterogeneous nanotextures are
characteristic.
Keywords
phosphates; nanotextures; sediments ultramicrotextures; Vendian; Alb-Cenomanian; Ukraine
Full Text

References
- Baturin H.N., 2004. Phosphate accumulation in the ocean.
Moscow, Nauka, 464 p. (In Russian).
- Velikanov V.A., 1975. About regularities distribution of phosphate
nodules in Vendian Callus layers of Podolia, Lithology
and Mineral Resources, vol. 6, pp. 84-90. (In Russian).
- Ilyin A.V., 2008. Ancient (Ediacaran) phosphates, Moscow,
GEOS, Proceedings of Geological Institute, RAS, vol. 587,
160 p. (In Russian).
- Lazarenko Ye.K., Srebrodolskii B.I., 1969. Mineralogy of Podillia,
Lviv, 346 p. (In Ukrainian).
- Gurskyi D.S., Yesipchuk K.Y., Kalinin V.I., 2006. Metallic and
non-metallic mineral resources of Ukraine, Non-metallic minerals,
Kyiv-Lviv, Europe Centre, Vol. II, 552 p. (In Ukrainian).
- Mirtov Yu.V., Zanin Yu.N., Krasilnikov N.A., 1987. Phosphate
Ultramicrostructures (Photoatlas), Project: phosphates Moscow,
224 p. (In Russian).
- Salnikov V.D. Bordyugov V.P., 1999. Phosphate raw materials
(geological and economical review), Kiev: Geoinform of
Ukraine, 55 p. (In Russian).
- Senkovskiy A.Yu. SEM study of the shelf chalk phosphorites
of Volyn-Podillia and Nearcarpathian, Geol. Journal, 1982,
vol. 42, No. 4, pp. 127-131. (In Russian).
- Senkovskiy Yu.N., Hlushko V.V., Senkovsky A.Yu., 1989.
Phosphates of the West of Ukraine. Kyiv, Naukova Dumka,
144 p. (In Russian).
- Senkovsky Yu. M. Paliy V.M., Shekhunova S.B., 2014. The
main phosphorgenesis phase of ancient ocean basins.
Roztotsko-Podolsky segment of Eastern European platform,
Mat. оf Int. Scient. Conf. «Modern Problems of sedimentary
basins lithology of Ukraine and adjacent territories», Kyiv, pp.
80-81. (In Ukrainian).
- Khvorova I.V., Dmitrik A.L., 1972. Microstextures of siliceous
rocks, M: Nauka, 48 p. (In Russian).
- Álvaro J.J., Shields-Zhou G.A., Ahlberg P., Jensen S. and Palacios
T., 2016. Ediacaran–Cambrian phosphorites from the
western margins of Gondwana and Baltica. Sedimentology
63, 350-377. doi: 10.1111/sed.12217
- Alvaro J.J., Clausen S., 2010. Morphology and ultrastructure
of epilithic versus cryptic,microbial growth in lower
Cambrian phosphorites from the Montagne Noire, France,
Geobiology, vol. 8, pp. 89–100. doi: 10.1111/j.1472-
4669.2009.00229.x
- Arning E.T., Birgel D., Brunner B., Peckmann J., 2009. Bacterial
formation of phosphatic laminites off Peru, Geobiology, vol.
7, pp. 295–307. doi: 10.1111/j.1472-4669.2009.00197.x
- Bailey J.V., Joye S.B., Kalanetra K.M., Flood B.E., Coresetti
F.A., 2007. Evidence of giant sulphur bacteria in Neoproterozoic
phosphorites, Nature, vol. 445, pp. 198–201.
doi:10.1038/nature05457
- Baturin G.N., Titov A.T., 2006. Biomorphic formations in recent
phosphorites, Oceanology, vol. 46, pp. 711–715. doi:
10.1134/S0001437006050110
- Cayeux M.L., 1936. Existence of many bacteria in sedimentary
phosphates of all ages: consequences. Accounts of the
Academy of Sciences, Paris, vol. 203, pp. 1198–1200. (In
French).
- Chen J.-Y., Oliveri P., Li C.-W., Zhou G.-Q., Gao F., Hagadorn J.W.,
Peterson K.J., Davidson E.H., 2000. Precambrian animal diversity:
putative phosphatized embryos from the Doushantuo
Formation of China, PNAS, vol. 97 (9), pp. 4457–4462.
- Cosmidis J., Benzerara K., Gheerbrant E., Estève I., Bouya B.,
Amaghzaz M., 2013. Nanometer-scale characterization of
exceptionally preserved bacterial fossils in Paleocene phosphorites
from Ouled Abdoun (Morocco), Geobiology, vol. 11,
pp. 139–153. doi: 10.1111/gbi.12022
- Dahanayake K., Krumbein W .E., 1985. Ultrastructure of a
microbial mat-generated phosphorite, Mineralium Deposita,
vol. 20, pp. 260–265.
- Goldhammer T., Brüchert V., Ferdelman T.G., Zabel M.,
2010. Microbial sequestration of phosphorus in anoxic upwelling
sediments, Nature Geoscience, vol. 3, pp. 557–561.
doi:10.1038/ngeo913
- Hiatt E.E., Pufahl P.K., Edwards C.T., 2015. Sedimentary
phosphate and associated fossil bacteria in a Paleoproterozoic
tidal flat in the 1.85 GaMichigamme ormation, Michigan,
USA, Sedimentary Geology, vol. 319, pp. 24–39.
- Huldtgren T., Cunningham J.A., Yin C., Stampanoni M., Marone
F., Donoghue P.C.J., Bengtson S., 2011. Fossilized nuclei
and germination structures identify Ediacaran «animal
embryos» as encysting protists, Science, vol. 334, pp. 1696–
1699.
- Lamboy, M., Rao, V.P., Ahmed, E., Azzouzi, N., 1994. Nannostructure
and significance of fish coprolites in phosphorites.
Marine Geology 120, 373–383.
- Lamboy M., 1994. Nanostructure and genesis of phosphorites
from ODP Leg 112, the Peru margin, Marine Geology,
vol. 118, pp. 5–22.
- Li Z., Wen T., Su Y., Wei X., He C., Wang D., 2014. Hollow
hydroxyl-apatite spheres fabrication with three-dimensional
hydrogel template, CrystEngComm, vol. 16, pp. 4202–4209.
Perez R.A., Del Valle S., Altankov G., Ginebra M.-P., 2011.
- Porous hydroxyl-apatite and gelatin/hydroxyl-apatite microspheres obtained by calcium phosphate cement emulsion,
Journal of Biomedical Materials Research Part B: Applied
Biomaterials, vol. 97B, pp. 156–166. doi: 10.1002/
jbm.b.31798
- Salama W ., El-Kammar A., Saunders M., Morsy R., Kong C.,
2015. Microbial pathways and palaeoenvironmental conditions
involved in the formation of phosphorite grains, Safaga
District, Egypt, Sedimentary Geology, vol. 325, pp. 41–58.
- She Z., Strother P., McMahon G., Nittler L.R., Wang J.,
Zhang J., Sang L., Ma C., Papineau D., 2013. Terminal Proterozoic
cyanobacterial blooms and phosphogenesis documented
by the Doushantuo granular phosphorites I: In situ
micro-analysis of textures and composition, Precambrian
Research, vol. 235, pp. 20–35.
- Soudry D., Nathan Y., 2000. Microbial infestation: a pathway
of fluorine enrichment in bone apatite fragments (Negev
phosphorites, Israel), Sedimentary Geology, vol. 132,
pp. 171–176.
- Soudry D., Nathan Y., Ehrlich S., 2013. Geochemical diagenetic
trends during phosphorite formation-economic implications:
the case of the Negev Campanian phosphorites,
Southern Israel, Sedimentology, vol. 60, pp. 800–819.
- Xiao S., Zhang Y., Knoll A.H., 1998. Three-dimensional preservation
of algae and animal embryos in a Neoproterozoic
phosphorite, Nature, vol. 391, pp. 553–558.
Stella B. Shekhunova, Svitlana M. Stadnichenko, Volodymir M. Paliy, Vitalii V. Permyakov