RU
EN
UA

Collection of scientifiс works of
the Institute of Geological Sciences
NAS of Ukraine

About The Author

Stella B. Shekhunova, Svitlana M. Stadnichenko, Vitalii V. Permyakov

Institute of Geological Sciences of NAS of Ukraine, Kyiv

Volodymir M. Paliy

Presidium of the National Academy of Sciences of Ukraine, Kyiv

NANOTEXTURES OF VENDIAN AND ALB-CENOMANIAN PHOSPHATES OF THE NEARDNISTRIA
Stella B. Shekhunova, Svitlana M. Stadnichenko, Volodymir M. Paliy, Vitalii V. Permyakov
Abstract

The nanostructural and nanotextural features of the Vendian (Callus) concretionary and Alb-Cenomanian shelly, sponge phosphates of two levels of phosphate accumulation on the territory of Ukraine were investigated, using precision research methods (scanning electron microscopy, EDS analysis). The following nanotextures of phosphates were documented: globular (in cavities, hypergenic-corroded crystalomorphic), microglobular, intrinsic (globular, crystalomorphic, crustified), crystallomorphic (elongated-prismatic, shortprismatic, needle, sub-parallel, non-oriented), radial-ray. The basic genetic types of their nanotextures (biomorphic, microbial, diagenetic, hypergenic, etc.) were distinguished and described. It is shown that for Cretaceous Alb-Cenomanian phosphates globular, and for Vendian crystalomorphic heterogeneous nanotextures are characteristic.

Keywords
phosphates; nanotextures; sediments ultramicrotextures; Vendian; Alb-Cenomanian; Ukraine
Full Text
References
  1. Baturin H.N., 2004. Phosphate accumulation in the ocean. Moscow, Nauka, 464 p. (In Russian).
  2. Velikanov V.A., 1975. About regularities distribution of phosphate nodules in Vendian Callus layers of Podolia, Lithology and Mineral Resources, vol. 6, pp. 84-90. (In Russian).
  3. Ilyin A.V., 2008. Ancient (Ediacaran) phosphates, Moscow, GEOS, Proceedings of Geological Institute, RAS, vol. 587, 160 p. (In Russian).
  4. Lazarenko Ye.K., Srebrodolskii B.I., 1969. Mineralogy of Podillia, Lviv, 346 p. (In Ukrainian).
  5. Gurskyi D.S., Yesipchuk K.Y., Kalinin V.I., 2006. Metallic and non-metallic mineral resources of Ukraine, Non-metallic minerals, Kyiv-Lviv, Europe Centre, Vol. II, 552 p. (In Ukrainian).
  6. Mirtov Yu.V., Zanin Yu.N., Krasilnikov N.A., 1987. Phosphate Ultramicrostructures (Photoatlas), Project: phosphates Moscow, 224 p. (In Russian).
  7. Salnikov V.D. Bordyugov V.P., 1999. Phosphate raw materials (geological and economical review), Kiev: Geoinform of Ukraine, 55 p. (In Russian).
  8. Senkovskiy A.Yu. SEM study of the shelf chalk phosphorites of Volyn-Podillia and Nearcarpathian, Geol. Journal, 1982, vol. 42, No. 4, pp. 127-131. (In Russian).
  9. Senkovskiy Yu.N., Hlushko V.V., Senkovsky A.Yu., 1989. Phosphates of the West of Ukraine. Kyiv, Naukova Dumka, 144 p. (In Russian).
  10. Senkovsky Yu. M. Paliy V.M., Shekhunova S.B., 2014. The main phosphorgenesis phase of ancient ocean basins. Roztotsko-Podolsky segment of Eastern European platform, Mat. оf Int. Scient. Conf. «Modern Problems of sedimentary basins lithology of Ukraine and adjacent territories», Kyiv, pp. 80-81. (In Ukrainian).
  11. Khvorova I.V., Dmitrik A.L., 1972. Microstextures of siliceous rocks, M: Nauka, 48 p. (In Russian).
  12. Álvaro J.J., Shields-Zhou G.A., Ahlberg P., Jensen S. and Palacios T., 2016. Ediacaran–Cambrian phosphorites from the western margins of Gondwana and Baltica. Sedimentology 63, 350-377. doi: 10.1111/sed.12217
  13. Alvaro J.J., Clausen S., 2010. Morphology and ultrastructure of epilithic versus cryptic,microbial growth in lower Cambrian phosphorites from the Montagne Noire, France, Geobiology, vol. 8, pp. 89–100. doi: 10.1111/j.1472- 4669.2009.00229.x
  14. Arning E.T., Birgel D., Brunner B., Peckmann J., 2009. Bacterial formation of phosphatic laminites off Peru, Geobiology, vol. 7, pp. 295–307. doi: 10.1111/j.1472-4669.2009.00197.x
  15. Bailey J.V., Joye S.B., Kalanetra K.M., Flood B.E., Coresetti F.A., 2007. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites, Nature, vol. 445, pp. 198–201. doi:10.1038/nature05457
  16. Baturin G.N., Titov A.T., 2006. Biomorphic formations in recent phosphorites, Oceanology, vol. 46, pp. 711–715. doi: 10.1134/S0001437006050110
  17. Cayeux M.L., 1936. Existence of many bacteria in sedimentary phosphates of all ages: consequences. Accounts of the Academy of Sciences, Paris, vol. 203, pp. 1198–1200. (In French).
  18. Chen J.-Y., Oliveri P., Li C.-W., Zhou G.-Q., Gao F., Hagadorn J.W., Peterson K.J., Davidson E.H., 2000. Precambrian animal diversity: putative phosphatized embryos from the Doushantuo Formation of China, PNAS, vol. 97 (9), pp. 4457–4462.
  19. Cosmidis J., Benzerara K., Gheerbrant E., Estève I., Bouya B., Amaghzaz M., 2013. Nanometer-scale characterization of exceptionally preserved bacterial fossils in Paleocene phosphorites from Ouled Abdoun (Morocco), Geobiology, vol. 11, pp. 139–153. doi: 10.1111/gbi.12022
  20. Dahanayake K., Krumbein W .E., 1985. Ultrastructure of a microbial mat-generated phosphorite, Mineralium Deposita, vol. 20, pp. 260–265.
  21. Goldhammer T., Brüchert V., Ferdelman T.G., Zabel M., 2010. Microbial sequestration of phosphorus in anoxic upwelling sediments, Nature Geoscience, vol. 3, pp. 557–561. doi:10.1038/ngeo913
  22. Hiatt E.E., Pufahl P.K., Edwards C.T., 2015. Sedimentary phosphate and associated fossil bacteria in a Paleoproterozoic tidal flat in the 1.85 GaMichigamme ormation, Michigan, USA, Sedimentary Geology, vol. 319, pp. 24–39.
  23. Huldtgren T., Cunningham J.A., Yin C., Stampanoni M., Marone F., Donoghue P.C.J., Bengtson S., 2011. Fossilized nuclei and germination structures identify Ediacaran «animal embryos» as encysting protists, Science, vol. 334, pp. 1696– 1699.
  24. Lamboy, M., Rao, V.P., Ahmed, E., Azzouzi, N., 1994. Nannostructure and significance of fish coprolites in phosphorites. Marine Geology 120, 373–383.
  25. Lamboy M., 1994. Nanostructure and genesis of phosphorites from ODP Leg 112, the Peru margin, Marine Geology, vol. 118, pp. 5–22.
  26. Li Z., Wen T., Su Y., Wei X., He C., Wang D., 2014. Hollow hydroxyl-apatite spheres fabrication with three-dimensional hydrogel template, CrystEngComm, vol. 16, pp. 4202–4209. Perez R.A., Del Valle S., Altankov G., Ginebra M.-P., 2011.
  27. Porous hydroxyl-apatite and gelatin/hydroxyl-apatite microspheres obtained by calcium phosphate cement emulsion, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 97B, pp. 156–166. doi: 10.1002/ jbm.b.31798
  28. Salama W ., El-Kammar A., Saunders M., Morsy R., Kong C., 2015. Microbial pathways and palaeoenvironmental conditions involved in the formation of phosphorite grains, Safaga District, Egypt, Sedimentary Geology, vol. 325, pp. 41–58.
  29. She Z., Strother P., McMahon G., Nittler L.R., Wang J., Zhang J., Sang L., Ma C., Papineau D., 2013. Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites I: In situ micro-analysis of textures and composition, Precambrian Research, vol. 235, pp. 20–35.
  30. Soudry D., Nathan Y., 2000. Microbial infestation: a pathway of fluorine enrichment in bone apatite fragments (Negev phosphorites, Israel), Sedimentary Geology, vol. 132, pp. 171–176.
  31. Soudry D., Nathan Y., Ehrlich S., 2013. Geochemical diagenetic trends during phosphorite formation-economic implications: the case of the Negev Campanian phosphorites, Southern Israel, Sedimentology, vol. 60, pp. 800–819.
  32. Xiao S., Zhang Y., Knoll A.H., 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite, Nature, vol. 391, pp. 553–558.